

A Series Circuit

Only ONE pathway from negative to positive If one light bulb burns out the rest will not work

Current in a Series Circuit

Current only has 1 path to follow, so it must flow through each part of the circuit.

$\mathbf{I}_{\mathrm{T}} = \mathbf{I}_{1} = \mathbf{I}_{2} = \mathbf{I}_{3} = \dots$

Charge can't be created or destroyed, so

current is constant throughout the circuit

Voltmeters and Ammeters placement

Voltmeters are placed across the resistor Ammeters are placed in series with the resistor

Example

2. A 4.0 Ω resistor, an 8.0 Ω resistor, and a 12.0 Ω resistor are connected in series with a 24.0 V battery.

- a. Calculate the equivalent resistance.
- b. Calculate the current in the circuit.
- c. What is the current in each resistor?

Example

5. A 7.0 Ω resistor is connected in series with another resistor and a 4.5 V battery. The current in the circuit is 0.60 A. Calculate the value of the unknown resistance.

<section-header><section-header>

<section-header><text><text>

A Parallel Circuit

The voltage across each parallel branch is the same.

To measure the current you will need an Ammeter in each branch.

Example Problems done in class

2. A length of wire is cut into five equal pieces. The five pieces are then connected in parallel, with the resulting resistance being 2.00 Ω . What was the resistance of the original length of wire before it was cut up?

Example Problems done in class

- 3. A 4.0 Ω resistor, an 8.0 Ω resistor, and a 12.0 Ω resistor are connected in parallel across a 24.0 V battery.
 - a. What is the equivalent resistance of the circuit?
 - b. What is the current in each resistor?

Example Problems done in class

- **4.** An 18.0 Ω , 9.00 Ω , and 6.00 Ω resistor are connected in parallel to an emf source. A current of 4.00 A is in the 9.00 Ω resistor.
 - a. Calculate the equivalent resistance of the circuit.
 - **b.** What is the potential difference across the source?
 - c. Calculate the current in the other resistors.

