

Electric Charge

- There are only two types of charge
 - q is the variable
 - Positive
 - Negative
 - Unit of charge is <u>Coulomb</u>, C
- Like charges repel, unlike charges attract.
- A neutral object has a net charge of zero.

Insulator

- Does not allow charge to move freely.
- Can be used to 'store' charge
- Glass, rubber, silk, plastic

Conductor

- Allows charge to move freely.
- Electrons move easily
- Most metals

Conductors and Insulators

Electrical conductor

Allows electricity to move through it easily

"loose" electrons

Metals, copper, aluminum, plasma, graphite

Electrical insulator

Does not allow electricity to move through it easily

Tightly bound electrons

Glass, dry wood, plastics, cloth, dry air

We now know (review):

- That charge depends on a balance of electrons and protons.
- A surplus of electrons is a negative charge
- A deficit of electrons is a positive charge.
- The total charge is always conserved. (we do not make or destroy electrons)

Law of Conservation of Electric Charge

 The net amount of electric charge produced in any process is zero.

Polarization

- A surface charge can be induced on an object by polarization.
- Polarization is when the charges align themselves so that all like charges are grouped together – simulating a net charge even though the actual charges balance out
- Polar Bonds water

